Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 13(1): 22106, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092824

ABSTRACT

Among the causative agents of neonatal diarrhoea in calves, two of the most prevalent are bovine coronavirus (BCoV) and the intracellular parasite Cryptosporidium parvum. Although several studies indicate that co-infections are associated with greater symptom severity, the host-pathogen interplay remains unresolved. Here, our main objective was to investigate the modulation of the transcriptome of HCT-8 cells during single and co-infections with BCoV and C. parvum. For this, HCT-8 cells were inoculated with (1) BCoV alone, (2) C. parvum alone, (3) BCoV and C. parvum simultaneously. After 24 and 72 h, cells were harvested and analyzed using high-throughput RNA sequencing. Following differential expression analysis, over 6000 differentially expressed genes (DEGs) were identified in virus-infected and co-exposed cells at 72 hpi, whereas only 52 DEGs were found in C. parvum-infected cells at the same time point. Pathway (KEGG) and gene ontology (GO) analysis showed that DEGs in the virus-infected and co-exposed cells were mostly associated with immune pathways (such as NF-κB, TNF-α or, IL-17), apoptosis and regulation of transcription, with a more limited effect exerted by C. parvum. Although the modulation observed in the co-infection was apparently dominated by the virus, over 800 DEGs were uniquely expressed in co-exposed cells at 72 hpi. Our findings provide insights on possible biomarkers associated with co-infection, which could be further explored using in vivo models.


Subject(s)
Coinfection , Coronavirus, Bovine , Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Animals , Cattle , Cryptosporidium parvum/genetics , Transcriptome , Cryptosporidiosis/parasitology , Cryptosporidium/genetics , Coronavirus, Bovine/genetics
2.
Viruses ; 15(3)2023 02 27.
Article in English | MEDLINE | ID: mdl-36992344

ABSTRACT

Bovine coronavirus (BCoV) is one of the major viral pathogens of cattle, responsible for economic losses and causing a substantial impact on animal welfare. Several in vitro 2D models have been used to investigate BCoV infection and its pathogenesis. However, 3D enteroids are likely to be a better model with which to investigate host-pathogen interactions. This study established bovine enteroids as an in vitro replication system for BCoV, and we compared the expression of selected genes during the BCoV infection of the enteroids with the expression previously described in HCT-8 cells. The enteroids were successfully established from bovine ileum and permissive to BCoV, as shown by a seven-fold increase in viral RNA after 72 h. Immunostaining of differentiation markers showed a mixed population of differentiated cells. Gene expression ratios at 72 h showed that pro-inflammatory responses such as IL-8 and IL-1A remained unchanged in response to BCoV infection. Expression of other immune genes, including CXCL-3, MMP13, and TNF-α, was significantly downregulated. This study shows that the bovine enteroids had a differentiated cell population and were permissive to BCoV. Further studies are necessary for a comparative analysis to determine whether enteroids are suitable in vitro models to study host responses during BCoV infection.


Subject(s)
Cattle Diseases , Coronavirus Infections , Coronavirus, Bovine , Animals , Cattle , Coronavirus, Bovine/genetics , Ileum
3.
Virol J ; 19(1): 99, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659694

ABSTRACT

BACKGROUND: Mosquito-borne viruses pose a serious threat to humans worldwide. There has been an upsurge in the number of mosquito-borne viruses in Europe, mostly belonging to the families Togaviridae, genus Alphavirus (Sindbis, Chikungunya), Flaviviridae (West Nile, Usutu, Dengue), and Peribunyaviridae, genus Orthobunyavirus, California serogroup (Inkoo, Batai, Tahyna). The principal focus of this study was Inkoo (INKV) and Sindbis (SINV) virus circulating in Norway, Sweden, Finland, and some parts of Russia. These viruses are associated with morbidity in humans. However, there is a knowledge gap regarding reservoirs and transmission. Therefore, we aimed to determine the prevalence of INKV and SINV in blood sucking insects and seroprevalence for INKV in semi-domesticated Eurasian tundra reindeer (Rangifer tarandus tarandus) in Norway. MATERIALS AND METHODS: In total, 213 pools containing about 25 blood sucking insects (BSI) each and 480 reindeer sera were collected in eight Norwegian reindeer summer pasture districts during 2013-2015. The pools were analysed by RT-PCR to detect INKV and by RT-real-time PCR for SINV. Reindeer sera were analysed for INKV-specific IgG by an Indirect Immunofluorescence Assay (n = 480, IIFA) and a Plaque Reduction Neutralization Test (n = 60, PRNT). RESULTS: Aedes spp. were the most dominant species among the collected BSI. Two of the pools were positive for INKV-RNA by RT-PCR and were confirmed by pyrosequencing. The overall estimated pool prevalence (EPP) of INKV in Norway was 0.04%. None of the analysed pools were positive for SINV. Overall IgG seroprevalence in reindeer was 62% positive for INKV by IIFA. Of the 60 reindeer sera- analysed by PRNT for INKV, 80% were confirmed positive, and there was no cross-reactivity with the closely related Tahyna virus (TAHV) and Snowshoe hare virus (SSHV). CONCLUSION: The occurrence and prevalence of INKV in BSI and the high seroprevalence against the virus among semi-domesticated reindeer in Norway indicate that further studies are required for monitoring this virus. SINV was not detected in the BSI in this study, however, human cases of SINV infection are yearly reported from other regions such as Rjukan in south-central Norway. It is therefore essential to monitor both viruses in the human population. Our findings are important to raise awareness regarding the geographical distribution of these mosquito-borne viruses in Northern Europe.


Subject(s)
Aedes , Encephalitis Virus, California , Flavivirus , Reindeer , Animals , Encephalitis Virus, California/genetics , Immunoglobulin G , Norway/epidemiology , Seroepidemiologic Studies , Sindbis Virus/genetics , Tundra
4.
Microbes Infect ; 24(3): 104909, 2022.
Article in English | MEDLINE | ID: mdl-34813933

ABSTRACT

Neonatal diarrhoea in calves is one of the major health problems in the cattle industry. Although co-infections are often associated with greater severity of disease, there is limited information on any impact on the pathogens themselves. Herein, we studied Cryptosporidium parvum and bovine coronavirus (BCoV) in human HCT-8 cells, inoculated either sequentially or simultaneously, to investigate any influence from the co-infections. Quantitative results from (RT)-qPCR showed that prior inoculation with either of the two pathogens had no influence on the other. However, the results from simultaneous co-inoculation showed that entry of viral particles was higher when C. parvum sporozoites were present, although elevated virus copy numbers were no longer evident after 24 h. The attachment of BCoV to the sporozoites was probably due to specific binding, as investigations with bovine norovirus or equine herpes virus-1 showed no attachment between sporozoites and these viruses. Flow cytometry results at 72 h post inoculation revealed that C. parvum and BCoV infected 1-11% and 10-20% of the HCT-8 cells, respectively, with only 0.04% of individual cells showing double infections. The results from confocal microscopy corroborated those results, showing an increase in foci of infection from 24 to 72 h post inoculation for both pathogens, but with few double infected cells.


Subject(s)
Cattle Diseases , Coinfection , Coronavirus, Bovine , Cryptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Viruses , Animals , Cattle , Cell Line, Tumor , Feces , Horses , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...